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3. Linear motion of a particle in liquids and gasses 
When you analyze a mechanical system in order to determine the equation of motion, one is often 
referred to assume, that the system is without friction or dissipative forces.  
This is usually only a realistic description to a certain degree, and sometimes completely 
unrealistic, but the differential equation, which describes the dynamics of the system, can only be 
solved in some cases, when the dissipative forces (coming from friction or viscosity) do not 
depend on the velocity. The latter is the case where to solid materials move relatively to each 
other. 
 
The aim of this section is to draw attention some simple examples where the friction (the 
viscosity) is velocity dependent, either linearly or as the square of the velocity. 

3.1 A ball sinking in a liquid 
We shall first consider a body (characteristically a ball), which sinks in a liquid (water) under the 
influence of gravity. 
If the speed is not too big (and for minor bodies it is not) we have a so called laminar streaming, 
and in that case, we can assume that the resistance to the movement is proportional to the speed of 
the sinking body. 
If the speed of movement becomes larger, the resistance transforms into turbulent flow, where the 
resistance to the movement is more conspicuous, but empirically it is assumed to be proportional 
to the square of the speed. Turbulence is best described by the appearance of vortices in the liquid 
or in the air. 
 
Incidentally turbulence is still one of partly unsolved problem hydrodynamics, since the Navier-
Stokes equations (Newton’s second law for hydrodynamics) do not allow a transition from laminar 
streaming to turbulent streaming, although both phenomena appear as solution to the equations. 
 
A theoretical expression for the viscous force on a ball in a laminar flow is first given by Stoke, 
and is called Stokes law. If r = radius of the ball, v= the speed,  = viscosity of the fluid, then:   
 
(3.1)  rvFvisc 6   

 
In the following examples, we shall abbreviate the constants r6  to one, and we then write the 

proportionality between the force and the speed as: vFvisc   . This formula is actually 

independent of the shape of the falling body, as long as the flow is laminar. 
 
For a motion along the x axis, we have the well known concepts. 
 

Velocity: 
dt

dx
v  ,    acceleration: 

2

2

dt

xd

dt

dv
a  ,   and  Newton’s 2. law: maFres   

 
A body falling in a liquid is influenced by the following forces: 
 
1. Gravity:  FT = mg. 
2. The buoyancy  VgF vup    
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The buoyancy is equal to the gravity of the displaced liquid, where v  is the density of the fluid 

and  

m

V   is the volume of a body with mass m and density . 

3. The viscous force: vFvisc  .  

 
The resulting force on the body is therefore: 
 

 FT – Fup   = gmVgVgVgVgmg vvvv  )(   

 
Where mv g is the gravity of the body reduced by the buoyancy:The equation of motion is 
hereafter: 
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To obtain more simplicity we put gg
m
vm
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The equation is solved by the same method, as we did in (2.4), by multiplication with 
t
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
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rearranging. 
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(3.4)  
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Adding the initial condition v(0)=0, we find 


gvmc  , which inserted in the solution (3.4) gives: 

(3.5)  )1(
t
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v






 

We can see that the velocity approaches asymptotically to


gvmv  .   

The half life of the velocity can be found in the traditional manner: 
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 2ln2ln
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For the majority of motions in liquids, the final velocity is obtained rather quickly.  
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The equation (3.5) can of course be integrated to give the distance x. 

(3.6)  ))1((0 



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If the body has a initial velocity v0 opposite to gravity, we must change sign on the mg term in 

(3.4) and 


gvmvc  0 . In this case we find the solution: 

(3.7)  )1(0 
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But again the velocity again approaches asymptotically to


gvmv  . 

 


